An Incomplete Summary of the Applied Plasma Session

Yi-Kang Pu Department of Engineering Physics Tsinghua University November 8, 2019

Five Plenary Talks

- Rod Boswell: Innovations, cheeses, business ethics, startups
- Young-Hoon Song: Application of plasma technologies for air pollution control
- Hirotaka Toyoda: High-energy negative ions in processing plasma
- Kazuhiko Endo: Atomic Layer Etching, Deposition and Modification Processes for Novel Nano-materials and Nano-devices
- Jin-Xiu Ma: Basic experiments on ion waves excitation and propagation

Rod Boswell's talk

- Using the story of cheese, an important source of food (a non spoiling protein source). He claims that this is the first major innovation of mankind. Cheese has a huge impact on the development of our society and the world, since it increases the ranges for herding, migration and war
- He discussed the history of the semiconductor industry and his personal involvement in this sector. One of his main messages is that invention in science and engineering can precede successful innovation by many years if not decades. (it took 22 years for the semiconductor equipment people to believe what he found in the lab in 1983)

- Necessity is the mother of invention
- Conflict is the mother of innovation
- Technical or scientific innovation can be considered the practical implementation of an invention that can make a meaningful impact on society.
- Disruptive innovation will typically attack a traditional business model with a lowercost solution and overtake incumbent firms quickly.
- Foundational innovation is slower, and typically has the potential to create new foundations for global technology systems over the longer term.

Large companies and small start-ups

Parents do not worry whether their children will usurp them and will do everything possible to help them succeed, even with adopted children.

Application of Plasma Technologies for Air Pollution Control

- AAPPS-DPP 2019 -

Song, Young-Hoon

Korea Institute of Machinery & Materials Dept. of Environment System

DPF + plasma burner (rotating arc plasma) for vehicles with a diesel engine

An effective way of emission reduction from these vehicles!

Power supply 80 W Diesel burner aided by rotating arc plasma

Diesel Particulate Filter (DPF)

PFCs treatment with arc torch & product

•Both technologies have been successfully commercialized in Korea!

High-energy negative ions in processing plasma

Hirotaka Toyoda

Department of Electronics, Center for Low-temperature Plasma Sciences,

Nagoya University

Major findings

- O- is the major negative ion in DC magnetron sputtering process
- O- with high kinetic energy , can affect the quality of the deposited film on the substrate
- Using heat flux to detect the O- flux
- Spatially resolved heat flux was obtained and the location of the peak of its profile is consistent with the location of plasma ring

High-energy Negative Ions in Oxide Sputter Plasma

Production mechanism of high-energy negative ion

O⁻ Ion Flux Evaluation from Heat Flux

Spatial Profile of Heat Flux

Localized heat flux is observed at plasma ring radius.

RF Magnetron with Insulating Target

Experimental setup

Spatial Measurement of O⁻ Energy Distribution

Example of O⁻ Energy Distribution

O⁻ Energy Distribution - Radial position dependence-

1) Radial variation of maximum O⁻ energy

2) Fine structure in O⁻ EDF

Radial variation of maximum O⁻ energy

Comparison of DC-conductive/ RF-insulative magnetron plasmas

Simulated Result of O⁻ EDF - Comparison with experiment-

Simulation almost explains energy fine structure

Oscillation of E field in the sheath - Modulation of O⁻ Energy

Kazuhiko Endo's Talk

- Title: Atomic Layer Etching, Deposition and Modification Processes for Novel Nano-materials and Nano-devices
- The main message: for etching, deposition and other processes in semiconductor industry, neutral beams have a significant advantage over processes involved with energetic ion beams

Movelength (nm)

Newly Developed Neutral Beam Source for Etching

High-Performance Si-Fin-MOS Transistor by Defect-free Etching

Sub-6nm Ge Fin MOSFET

Y.-J. Lee, et. al., IEEE International Electron Devices Meeting, 33.5 (San Francisco, 2016/12/07).

NBO of Transition Metal for ReRAM

Oxygen neutral beam at RT Gas: O₂, ICP plasma power: 500W, Time: 2 min

Electrical Characteristics of Cu/Ta₂O₅/Pt

Bipolar resistive switching with SET and RESET threshold voltages of +0.2 and -0.14 to -0.10V

- •0.5 μ A operation current
- • $R_{\rm OFF}/R_{\rm ON} > 500$
- •100 times endurance

Our Ta_2O_5 film can work as an ionic transport layer for resistive switching.

T. Ohno et al., Appl. Phys. Lett. 106, 173110 (2015).

Surface Reaction in NBECVD

S.Yasuhara, et., al., J. Phys. D: Appl. Phys. 42 (2009) 055208

Film properties comparison

	Metric	Porous SiCO by PECVD	Non-porous SiCO by NBECVD
k-value	Hg-probe	2.6	2.2
Modulus (GPa)	Nano-indenter	6.0	11.7
Density (g/cm3)	XRR	1.27	1.54
Pore size (nm)	SAXS	1.2	No detected

- ✓ NBECVD SiOCH has Higher modulus
- ✓ NBECVD SiOCH has Higher density
- ✓ NBECVD SiOCH has no pores

By using NBECVD method and controlling reaction, NBE SiOCH film is achieved as NON-Porous SiOCH with ultra low-k.

Next, discuss about molecular structure of NP-SiOCH

Pseudo-waves in an ion-beam-plasma system*

Jin-Xiu Ma, Kai-yang Yi, Zi-an Wei, Fei Wu, Qi Liu, and Zheng-yuan Li

School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, China

*Work supported by NSFC (Grant No. 11575183)

wave excitation and detection circuitry

Invited talks on diagnostics

- Wonho Choe: Tomography-based 2 -D plasma imaging for low and high -temperature large-scale plasmas
- Hiroshi AKATSUKA: Optical emission spectroscopic (OES) analysis of electron temperature and density in atmospheric-pressure non-equilibrium argon plasmas
- D. P. Subedi: Optical Characterization of Atmospheric Pressure Dielectric Barrier Discharge (DBD) in Air Using Transparent Electrode

Tomography-based 2-D plasma imaging for low- and high-temperature large-scale plasmas

Wonho CHOE¹, J. Jang², S. Park², I. Song¹, B. Peterson³

¹Korea Advanced Institute of Science and Technology (<u>KAIST</u>), Korea ²National Fusion Research Institute (NFRI), Korea

³National Institute of Fusion Science (NIFS), Japan

Plasma radiation after tomographic reconstruction (Kr injection)

- Radiation power increases by Kr gas injection
- Tomographic reconstruction is routinely used for X-ray and VUV diagnostics in KSTAR

A-I16

Optical emission spectroscopic (OES) analysis of electron temperature and density in atmospheric-pressure non-equilibrium argon plasmas

Hiroshi AKATSUKA, Hiroshi Onishi, Thijs van der Gaag, Atsushi Nezu

Tokyo Institute of Technology, Tokyo, Japan

 $N_{\rm e}$ -dependence in the low $N_{\rm e}$ -region of $T_{\rm e}$ - $T_{\rm ex}$ relation of atmospheric pressure plasma

- In the low N_{e} region, the influence of N_{e} on T_{ex} is small.
- At $T_{ex} \sim 0.4$ eV, the error of T_e is about ± 0.1 eV against the change of $10^{10} - 10^{12}$ cm⁻³.

Experimental Example

• 50Hz DBD

- Atmospheric-pressure nonequilibrium Ar plasma source by DBD
- Pulse voltage up to about 9 kV at secondary voltage

Hakozaki, Akatsuka et al., JSAP-Spring meeting (2018).

Optical Characterization of Atmospheric Pressure Dielectric Barrier Discharge (DBD) in Air Using Transparent Electrode.

D. P. Subedi ¹, R. Manandhar¹, R. Guragain¹, H. Baniya¹, G. Panta¹, C.S. Wong ² ¹ Dept. of Physics, School of Science, Kathmandu University, Dhulikhel, Kavre, Nepal ²Dept. of Physics, University of Malaya, Kuala Lumpur, Malaysia e-mail: dsubedi@ku.edu.np

3rdAsia-Pacific Conference on Plasma Physics, 4-8,11.2019, Hefei, China

Improvement of Growth and Yield of Rice Plants with Plasma Treatment

<u>Hiroshi Hashizume¹</u>, Hidemi Kitano¹, Hiroko Mizuno¹, Satoru Kinoshita¹, Genki Yuasa², Satoe Tohno², Mikiko Kojima³, Yumiko Takebeyashi³, Hiromasa Tanaka¹, Kenji Ishikawa¹, Shogo Matsumoto¹, Hitoshi Sakakibara¹, Susumu Nikawa², Masayoshi Maeshima¹, Masaaki Mizuno¹, and Masaru Hori¹

> ¹Nagoya Univ., Japan, ²Fujitsu Client Computing Ltd., Japan, ³RIKEN, Japan

3rd Asia-Pacific Conference on Plasma Physics (AAPPS-DPP2019), Crowne Plaza Hefei, China, 2019/11/4, 14:30-15:00

Plasma treatment for cultivation of rice plants

Rice cultivation consists of the multi-steps in greenhouse and paddy field. It is necessary to investigate the effect of plasma for each growth stage.

Process of Rice cultivation

In general,

raising the healthy seedlings in early stage can lead to high harvest in rice cultivation.

Plasma treatment for cultivation of rice plants

Rice cultivation consists of the multi-steps in greenhouse and paddy field. It is necessary to investigate the effect of plasma for each growth stage.

Process of Rice cultivation

Plasma treatment for cultivation of rice plants

Rice cultivation consists of the multi-steps in greenhouse and paddy field. It is necessary to investigate the effect of plasma for each growth stage.

Process of Rice cultivation

According to the climate changes from summer to autumn,

the growth shifts from vegetative to reproductive growth, resulting in heading. The cultivation in the paddy field is the important step, because it is directly linked to the harvest through the drastic change of the growth stage.

Plasma treatment for cultivation of rice plants

Rice cultivation consists of the multi-steps in greenhouse and paddy field. It is necessary to investigate the effect of plasma for each growth stage.

Process of Rice cultivation

Feng Huang's talk on plasma agriculture

China Agricultural University

Control group

Plasma group

Zilan Xiong's talk on plasma medicine

Plasma Treatment of Onychomycosis

Toe Treatment Results by SMD

Only three times of 45 min SMD treatment over one week (not every week) with a proprietary treatment. 9 toes of the patient got clear after 7 months. Although 3 toes are re-infected, however, 6 toes are cured by such short time of plasma treatment.

💏 東京大学

High throughput production of silicon nanorod from powder feedstock by plasma flash evaporation

A. Tanaka¹⁾, R. Ohta¹⁾, and M. Kamabara¹⁾

1) Dept of Mater. Eng., The Univ. Tokyo, Tokyo, Japan

AAPPS-DPP 2019 (A-I17) 2019-11-7 14:00-14:30 @Applied-1 (Birch), Crowne Plaza Hefel, China

Vapor-Liquid-Solid (VLS) mode

Next-G high density Lithium-ion battery

Si as high density anode

Si: 10x higher capacity than C

→ Rapid capacity decay

Pulverize due to huge Si dilation

- Si nanowire/nanotube
 1D structure
 - → direct contact with current collector
 - \rightarrow spaces to buffer dilation
 - \rightarrow aligned anisotropic dilation direction

Plasma spraying: Plasma Flash Evaporation (PFE)

Effect of Process Parameters on the Growth and Field Emission Properties of Graphene -Carbon Nanotube Composite

Suresh C. Sharma, Department of Applied Physics, Delhi Technological University (DTU), Delhi-110 042, India

In order to enhance or control the electron emission characteristics of (graphene-CNT), process parameters such as, gas pressure, input power, and substrate bias on the number density and dimensions of VG sheet grown over CNT surface are investigated. Plasma enhanced chemical vapor deposition (PECVD) is considered as the most viable technique for the growth of graphene-CNT as it exhibits better control over the graphene-CNT structure at relatively low temperatures and also offers the advantage of graphene-CNT structure modification by process parameters. In the present work, a theoretical model is developed to describe the growth of CNT and thereafter nucleation and growth of graphene sheets on CNT in the presence of CH₄/H₂/N₂ plasma. The defects generated on the CNT surface during its growth are considered as the nucleation sites for the growth of graphene sheet on CNT surface. The model incorporates the charging rate of the graphene-CNT, kinetics and energy balance of all plasma species i.e., electrons, positively charged ions and neutral atoms along with the process parameters, and growth rate of the graphene-CNT. Numerical calculations on the effect of process parameters on the growth of graphene-CNT have been carried out for typical glow discharge plasma parameters. It is observed that the electron density, electron temperature, and ion energies in the plasma increases on reducing the gas pressure and on increasing the input power and substrate bias, which subsequently enhances the ion bombardment and carbon generation on the CNT surface, and thereby the height as well as number density of VG sheets on CNT increase, and thickness of VG sheet decreases. Some of the results of the present investigation are in compliance with the existing experimental observations.

Advanced Low-Temperature Processes at the University of Illinois

D. N. Ruzic, E. Barlaz, L. Bonova, J. Uhlig, G. Panici, D. Qerimi, J. Mettler, D. Patel, T. Choi, Z. Jeckell, <u>D. Andruczyk</u>

Email: druzic@illinois.edu or andruczy@Illinois.edu

Semiconductor-Processing and Atmospheric Plasma Research

Hydrogen Atom Radical Probe experiment: HARP

- Facility to study radical density distributions in processing plasmas
 - \blacktriangleright In Situ Measurement of N₂ O₂ and H₂ radicals
 - Study the dependence with pressure and discharge power

Minu controlled flow rate of 3 gasses simultaneously
 Base pressure 1*10E-7 Torr
 Available gases: Argon, Helium, Oxygen, Hydrogen, Nitrogen

Funded by DuPont and LAM Research

Tin Residue Etch eXperiment: TREX

Facility to study Sn deposition cleaning for the semiconductor industry

- > Sn etching from EUV source collector and walls
- >In situ process by formation of surface wave plasma (SWP)
- Modeling activities to determine influence of pressure and power on etching rate
 Tor H₂ Ebh

Funded by DOD and SERDP

- Novel coating method for Department of and GM formed with an atmospheric plasma torch
- Multilayer coating based on ZrO/SiO films
- > ZrO acts as passivation layer for corrosion resistance
- > SiO works as water barrier coating and adhesion promoter
- > Stress testing of SiO layers including resistance to water soaking.
- The application of an AP adhesión layer creates covalent bonding of the glue to the metal, and therfore makes the bond STRONGER than the underlying metal itself.

SIO₂ 10.0kV 7.6mm x200k SE(U) 200k

A-I21 Generation of Innovative Thermal Plasma with Diode-Rectification Technique

Manabu Tanaka, Takayuki Watanabe, Kyushu University, japan Diode-rectified multiphase AC arc as an innovative thermal plasma generating method was established as **big challenge of thermal plasma industrialization**

- (1) Diode-Rectification
- Separation of an AC electrode into pairs of Cathode & Anode

(2) High-Speed Camera Observation

- Electrode phenomena during processing were understood.
- Arc Temperature Field was clarified.

3rd Asia-Pacific Conference on Plasma Physics

Atmospheric pressure plasma surface modification: from surface treatment to thin film deposition

Nov. 4th (Mon)

Se Youn Moon (文世連)

Plasma Experiment & Device Application Lab

Department of Quantum System Engineering

Chonbuk National University (全北大學校)

AI20

AI22- Chemical non-equilibrium simulation of arc attachment on anode of a high-intensity transferred arc

Hai-Xing Wang's talk Beihang University

 $n_{Ar_2^+}$

Unit: m

15

Radial evolutions of the kinetic processes rates

High-electron-density microplasmas generated inside capillaries

<u>Shuqun Wu</u>, Xueyuan Liu, Fei Wu *Email: wushuqun2010@hotmail.com* College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China

> AAPPS-DPP 2019 Hefei, China

Electron density inside and outside

■ Ne of the microplasma inside capillary is much higher than Ne of the plasma in the quartz tube.

Tube diameter decreases from 100 to 4 μ m, the current density increases from 2.5 × 10⁷ Am⁻² to 3.5 × 10⁹ Am⁻². Tube diameter decreases from 100 to 9 μ m, the electron density increases from 2 × 10¹⁶ cm⁻³ to 11 × 10¹⁶ cm⁻³.

J and Ne of the microplasma are comparable to those in spark discharge.

The discharge propagation and the evolution of electric field and surface charge in nanosecond-pulse surface dielectric barrier discharge

<u>Cheng Zhang</u>, Bangdou Huang, Tao Shao 010-82547294, zhangcheng@mail.iee.ac.cn

Institute of Electrical Engineering, Chinese Academy of Sciences High Voltage and Discharge Plasma Laboratory Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion November 5th, 2019

Electric Field Induced Second Harmonic (E-FISH) Generation

[Goldberg B M et al 2018] [Chng T L et al 2019]

- Nd:YAG laser (Beamtech SGR-S400), 10 Hz
- 1064 nm laser energy: ~ 15 mJ
- Pulse width: 7-9 ns
- Horizontally polarized
- At focal point, beam diameter $\sim 120 \ \mu m$
- Rayleigh range $\sim 11 \text{ mm}$

- $I_i^{(2\omega)} = k N_g^2 (E^{\text{ext}})^2 I_{\text{L}}^2$
- Calibration with a known electric field.
- Apply a voltage below the breakdown threshold across a parallel-plate electrode geometry
 - 11 -

Electric field evolution

- The direction of E_x reverses during the SIW propagation ٠
- Peak E_x decreases away from the HV electrode, $E_{x, Epoxy} > E_{x, PTFE}$ ٠
- Residual E_x appears before the breakdown due to the surface charges (negative E_x) ٠
- E_x is uniform before the breakdown at every position for epoxy, E_x is stronger near ٠ the HV electrode for PTFE

Applied voltage: 14 kV; PRF: 100 Hz

Thank you very much for staying around for my talk!